Showing posts with label Depressant. Show all posts
Showing posts with label Depressant. Show all posts

24 October 2013

PCP (Phencyclidine)

Pronunciation: pee-see-pee
Chemical Abstracts Service Registry Number: 77-10-1. (Hydrochloride form 956-90-1)
Formal Names: Phencyclidine
Informal Names: Ace, Ad, Alien Sex Fiend (with heroin), Amoeba, Angel, Angel Dust, Angel Hair, Angel Mist, Angel Poke, Animal Trank, Animal Tranq, Animal Tranquilizer, Aurora Borealis, Belladonna, Black Dust, Black Whack, Blotter Acid, Blue Madman, Boat, Bohd, Bush, Busy Bee, Butt Naked, Cadillac, Cannabinol, Cigarrode Cristal, CJ, Clicker, Clickum, Cliffhanger, Columbo,
Cozmo’s, Crazy Coke, Crazy Eddie, Crystal, Crystal Joint, Crystal T, Cycline, Cyclone, D, Detroit Pink, Devil’s Dust, Dipper, DMT, DOA, Do It Jack, Domex, Drink, Dummy Dust, Dust, Dusted Parsley, Elephant, Elephant Trank, Elephant Tranquilizer, Elysion, Embalming Fluid, Energizer, Erth, Fake STP, Flake,

Flying Saucer, Fresh, Fuel, Good, Goon, Goon Dust, Gorilla Biscuit, Gorilla Tab, Green, Green Leaves, Green Tea, Happy Sticks, HCP, Heaven & Hell, He-Man,
Herms, Hinkley, Hog, Hog Dust, Horse Tracks, Horse Tranquilizer, Ice, Ill, Illy Momo, Jet Fuel, Juice, K, Kap, Kay Jay, K-Blast, Killer, KJ, Kool, Koolly High, Krystal, KW, LBJ, Leaky Bolla, Leaky Leak, Lemon Drop, Lemon 714, Lenos, Lethal Weapon, Little One, Live One, Log, Loveboat, Lovely, Mad Dog, Madman, Magic, Magic Dust, Magic Mist, Mean Green, Mint Dew, Mint Leaf, Mint Weed, Missile, Mist, Monkey Dust, Monkey Tranquilizer, More, New Acid,
New Magic, Niebla, Octane (mixed with gasoline), Oil, Omen, OPP, Orange Crystal, Ozone, P, Parsley, Paz, PCPA, Peace, PeaCe Pill, Peace Weed, Peep, Peter Pan, Pig Killer, Pikachu (mixed with MDMA), Pit, Polvo, Polvo de Angel, Polvo de Estrellas, Puffy, Purple Rain, Red Devil, Rocket Fuel, Scaffle, Scuffle, Selma, Sernyl, Sernylan, Sheets, Sherm, Sherman, Sherm Stick, Skuffle, Smoking, Snort, Soma, Space Base (mixed with crack cocaine), Space Cadet (with crack), Space Dust (with crack), Speedboat (with crack and marijuana), Spore, Squirrel (with crack and marijuana), Stardust, Stick, STP, Super, Super Grass (with marijuana), Super Joint, Super Kool, Super Weed, Surfer, Synthetic Cocaine, Synthetic THT, TAC, T-Buzz, Tea, Tic, Tic Tac, Tish, Titch, Trank, Wac, Wack, Water, Weed, Wet (alone or with marijuana), Wet Daddy, Whack (with crack or heroin), Whacky Weed, White Devil, White Horizon, White Powder,
Wicky Stick (with crack and marijuana), Wobble Weed, Wolf, Wooly (with marijuana), Worm, Yellow Fever, Zimbie, Zombie Dust, Zombie Weed, Zoom

Type: Depressant.
Federal Schedule Listing: Schedule II (DEA no. 7471)
USA Availability: Prescription

Uses.
This substance was invented in the 1920s, but not until the 1950s was it introduced as a drug, intended as a human and veterinary anesthetic. Human medical use soon ended because of psychological effects discovered during tests on patients. PCP is related to ketamine and, like that substance, has hallucinogenic qualities. Depending on how PCP is used, it can have stimulant, depressant, or hallucinogenic actions. In monkeys PCP is about 10 times stronger than ketamine.

Drawbacks.
PCP can make people feel aloof from the world around them, cause numbness, interfere with movement, and distort perception of time. Hallucinations, floating sensations, euphoria, and mania can occur. People may forget what they did while under the drug’s influence; such amnesia can last for 24 hours after a dose. Although euphoric effects are well documented,
one group of researchers noted bouts of depression brought on by chronic use of the substance, though not by intermittent use. Yet the same researchers also found people successfully using the drug as an antidepressant, and animal studies suggest PCP may have antianxiety properties. The substance reduces appetite in dogs. Rats lost weight when they chronically received PCP.

Law enforcement authorities say the drug can make people hostile and give them extra physical strength, and the same has been experienced by medical personnel dealing with overdose emergencies. Researchers, however, have generally not observed such results from PCP (although one of the very first studies in the 1950s noted violent reactions from about 5% of surgery patients who received the drug as an anesthetic). A study examining PCP cases at a
Los Angeles psychiatric hospital emergency room explicitly noted that wild conduct among PCP patients was uncommon. Perhaps police simply have more dealings with hostile individuals; for example, alcohol can embolden belligerent persons, but violence is not considered an inherent effect of alcohol.

Persons who become violent after taking PCP already have such a history without the substance, and during a police encounter they may well be under the influence of alcohol or other drugs as well. Military research found that PCP hostility did not occur unless persons were under stress, and not all stressed individuals reacted that way. The military study also found that psychotic
episodes did not occur with normal persons; someone had to be prone to psychosis in order for such behavior to occur while using the drug (a finding supported by other studies as well). In mice research PCP reduces violent behavior. Most species, including monkeys, act more docile after taking the drug. Some violent human episodes are described as coming not from aggression
but from a PCP user’s panic when police or medical personnel try to restrain the person. One group of addicts spoke of the substance lowering inhibitions, which is not the same as causing violence, although an already enraged person who loses inhibitions may engage in stormy behavior. In addition, users who attract attention from police or emergency medical personnel
are not necessarily representative of recreational users in general, either in personality or size of dose or reaction to the dose.

PCP’s physical effects include increased salivation, body temperature, pulse rate, and blood pressure. Case reports about humans indicate that PCP can raise blood pressure so high that a medical emergency occurs. The drug can bring on dizziness and double vision, create seizures, and cause muscle discoordination and damage. Numbness caused by PCP can promote injury due to lack of pain signals that ordinarily warn a person to stop doing something.

Cases of kidney failure and liver destruction have been associated with the
substance.

The higher one rises in the traditional evolutionary scale (for example, from mice to rats to humans), the lower the dose necessary for PCP to create anesthesia. Two observers who noted that trend concluded that human brains are exquisitely sensitive to PCP. Animal experiments reveal brain damage when the substance is used chronically for as little as five days. PCP addicts
have complained of memory trouble. A small human study found impaired ability for abstract thinking and for physical movement in response to signals, impairment measured years after the persons said they had stopped using PCP. Moreover, users of the drug may have normal scores on intelligence tests but have emotional disabilities and be crippled in their ability to cope with
problems. Those latter defects may be caused by the drug or may instead be reasons why people resort to the drug.

Abuse factors.
Initially PCP was a Schedule III drug, but in 1978 government authorities shifted it to Schedule II because of recreational use. At about that time a Los Angeles psychiatric hospital emergency room tested 145 consecutive patients for PCP; 63 were positive (over 40%).

A study of 200 recreational users found differences in effects reported by persons who took a little of the drug once a month and by persons who took a lot every day for years. Heavy users felt more pepped-up, violent, and suicidal. Regular users of PCP are known for self-destruction; one study found that 24% of regular users had tried to commit suicide, and 36% had overdosed
on other drugs. A study of PCP users who were treated at a charity hospital found no behavioral difference between black or white males, but black females acted much stranger and more aggressively than white females. The meaning of that finding is unclear—it could be racial, could be cultural, could be a statistical oddity that would disappear after more research.

When monkeys were given a choice between water or PCP, the animals showed no preference; such indifference is a sign of low addictive potential.

An experiment measuring rats with prenatal exposure to PCP found the animals were more sensitive to the drug than were rats lacking prenatal exposure— the opposite of tolerance. Dependence has been reported in monkeys that receive PCP. Pigeons that received the drug every day for 215 days did not develop dependence. Human research has found tolerance but not dependence among users, although dependence is suspected.

Various cold remedies contain doxylamine succinate, which can cause a false-positive drug test for PCP.

Drug interactions.
In a rat experiment neither alcohol nor PCP affected blood pressure, but blood pressure rose when they were used simultaneously. They also speeded up the heart. One human study found that PCP may be more likely to induce excitability in alcoholics than in nonalcoholics, possibly meaning that alcohol increases the likelihood of a manic reaction. In mice marijuana has reduced hyperactivity caused by PCP.

Cancer.
Not enough scientific information to report.

Pregnancy.
Two studies published only a few months apart in the 1980s gave different impressions about the prevalence of PCP use among pregnant women. In one study a group of 2,327 pregnant women were tested for PCP use; 19 were taking the drug. Those 19 were typically polydrug abusers. A different study of 200 pregnant women found 24 using PCP, a rate 15 times
higher than in the other group.

If a pregnant woman uses PCP, it passes into the fetus. Reports exist of PCP being detected in newborns three months after the mothers claimed to have stopped using the drug during pregnancy, which would mean that the drug remains in a fetus months after a pregnant woman stops taking PCP. Whether the women’s claims of abstinence were confirmed by laboratory testing during those months of pregnancy is unclear, however. In mice and pigs PCP builds
up in the fetus, reaching levels 7 to 10 times higher than in the female’s bloodstream.

The drug is suspected of causing birth defects. At dosage levels high enough to poison the pregnant female, birth defects have been produced in rats and mice. Rats with prenatal exposure to PCP show defective memory and learning ability. The substance is suspected of harming fetal brain development in humans. Pregnant women who use the drug tend to produce infants who are smaller than normal. In a group of 83 infants with prenatal PCP exposure,
almost half had a head circumference below the 25th percentile (meaning that 75% of infants in the general population have bigger heads and, by implication, larger brains). Some were below the 10th percentile. Smaller-than-normal infant skulls may interfere with physical growth of the brain. People who abuse one drug tend to abuse others as well; one study of 41 women who
used PCP during pregnancy found that most had also been using cocaine.

Two studies of women who used PCP during pregnancy found that all were poor; most were unmarried, were in an ethnic minority, and had received inadequate prenatal care. Such factors confound efforts to confirm what effect PCP alone has on pregnancy.

Offspring of mothers who have been using PCP can exhibit symptoms similar to those seen in infants undergoing opiate withdrawal—even though the drug is not an opiate, and research has yet to demonstrate that PCP dependence occurs. Infant distress may be real, but the newborn may be responding to the unpleasant effects of the drug itself rather than responding to sudden
absence of the drug.

A year after birth, a group of 57 babies with prenatal PCP exposure showed normal development in mental ability and physical coordination, although almost half were ill-tempered. About 15% had trouble sleeping, and the same percentage lacked normal emotional attachment. Those findings are consistent with other studies. Home environment, of course, may influence behavior as much or more than prenatal drug exposure. Factors noted above (lack of money, absent father, being in a disadvantaged ethnic minority) can weaken home life. Still, the kinds of brain function damage seen in animal studies are the kinds of damage that should interfere with children’s abilities to socialize normally—exactly the kind of deficit seen in children who have prenatal exposure to PCP.

In mice PCP not only passes into maternal milk, but milk levels are 10 times higher than maternal blood levels.

Additional information.
PCP is related to the Schedule I hallucinogens PCE (CAS RN 2201-15-2), PCPy (2201-39-0), TCP (21500-98-1), and TCPy (22912- 13-6).

Rat experimentation measured PCPy as about the same strength as PCP.
Other laboratory measurement shows TCP as stronger than PCP, and PCE as stronger than TCP. French military experiments found that TCP could protect rats and guinea pigs from the chemical warfare agent soman.

“Cannabinol” is a nickname for PCP and refers to THC, which is the active chemical in marijuana and dronabinol, but PCP is not THC. Likewise “DMT” and “STP” (DOM) are nicknames for PCP, but they are all different drugs.

Additional scientific information may be found in:
Baldridge, E.B., and H.A. Bessen. “Phencyclidine.” Emergency Medicine Clinics of North
America 8 (1990): 541–50.

Brecher, M., et al. “Phencyclidine and Violence: Clinical and Legal Issues.” Journal of
Clinical Psychopharmacology 8 (1988): 397–401.

Giannini, A.J., R.K. Bowman, and J.D. Giannini. “Perception of Nonverbal Facial Cues
in Chronic Phencyclidine Abusers.” Perceptual and Motor Skills 89 (1999): 72–78.

Graeven, D.B., J.G. Sharp, and S. Glatt. “Acute Effects of Phencyclidine (PCP) on
Chronic and Recreational Users.” American Journal of Drug and Alcohol Abuse 8
(1981): 39–50.

Harry, G.J., and J. Howard. “Phencyclidine: Experimental Studies in Animals and
Long-term Developmental Effects on Humans.” In Perinatal Substance Abuse: Research
Findings and Clinical Implications, ed. T.B. Sonderegger. Baltimore, MD:
Johns Hopkins University Press, 1992. 254–78.

Khajawall, A.M., T.B. Erickson, and G.M. Simpson. “Chronic Phencyclidine Abuse and
Physical Assault.” American Journal of Psychiatry 139 (1982): 1604–6.

Pradhan, S.N. “Phencyclidine (PCP): Some Human Studies.” Neuroscience and Biobehavioral
Reviews 8 (1984): 493–501.

Schuckit, M.A., and E.R. Morrissey. “Propoxyphene and Phencyclidine (PCP) Use in
Adolescents.” Journal of Clinical Psychiatry 39 (1978): 7–13.

Sioris, L.J., and E.P. Krenzelok. “Phencyclidine Intoxication: Literature Review.” American
Journal of Hospital Pharmacy 35 (1978): 1362–67.

19 March 2010

Opium (Papaver album, Papaver somniferum, Poppy)

Pronunciation: OH-pi-uhm
Chemical Abstracts Service Registry Number: 8008-60-4
Formal Names: Papaver album, Papaver somniferum, Poppy
Informal Names: Ah-pen-yen, Aunti, Aunti Emma, Big O, Black, Blackjack, Black Pill, Black Stuff, Chandoo, Chandu, Chinese, Chinese Molasses, Chinese Tobacco, Chocolate, Cruz, Dopium, Dover, Dover’s Deck, Dover’s Powder, Dreamer, Dream Gun, Dreams, Dream Stick, Easing Powder, Emma, Fi-Do-Nie, Garden-Poppy, Gee, God’s Medicine, Goma, Gondola, Gong, Goric, Great Tobacco, Gum, Guma, Hard Stuff, Hocus, Hop, Indonesian Bud, Joy, Joy Plant, Mawseed, Midnight Oil, Mira, Mud, O, Oil, OJ, OP, Ope, Pen Yan, Pen Yen, PG, Pin Gon, Pin Yen, Plant, PO, Pox, Skee, Tar, Tongs, Tox, Toxy, Toys, When- Shee, Winshee, Yen Shee Suey, Ze, Zero
Type: Depressant (opiate class).
Federal Schedule Listing: Schedule II (DEA no. 9600)
USA Availability: Prescription
Pregnancy Category: C

Uses.
Many opium products are discussed elsewhere in this book, but here we are dealing with the substance from which all those products originate. Opium has long been used to relieve pain, fight coughs, cure diarrhea, and control spasms. Traditionally, opium is dried sap harvested from the seedproducing portion of opium poppy plants. At harvest time fields of poppies can have a strong smell, and children in the fields can be overcome by those airborne chemicals. A modern opium variety is “poppy straw,” composed of dry or liquid extracts from the plant. The natural product can be used by itself or can be refined to produce various drugs known as “opiates,” valued for their medicinal effects.

Archaeologists have found evidence of opium poppy cultivation dating from 15,000 years ago, but examination of historical records has not proven that ancient peoples understood opium’s medicinal benefits; the product may have been used traditionally but without understanding how or even whether it worked. Opium may have been used in Roman Empire religious ceremonies, perhaps exploiting the drug’s effects to symbolize a process of death and reincarnation, and even older records imply that ancients may have believed that opium could produce happiness, although evidence of ancient recreational use is nonexistent.

The Opium War from 1840 to 1842 was the first drug war, followed by the second Opium War of 1856 to 1860. These military conflicts were fought against China by England and other European powers in order to force the Chinese government to legalize the opium trade (certainly a goal different from that of the “drug war” familiar to Americans as the twenty-first century
began).

Opium and its morphine component were widely used to treat wounded soldiers in the American Civil War, and later historians have routinely said that addiction became so common that it was called “the soldier’s disease.” Such illness may have existed, but an investigator who diligently examined medical writings from that time found none that attributed postwar addictions to war-related medical use. In that era the opium trade was legal, and someone who analyzed opium import statistics found no evidence that consumption rose due to Civil War addictions; a distinguished authority has noted that people of that era called dysentery “the soldier’s disease.”

Just before World War I an article in the Journal of the American Medical Association declared, “If the entire materia medica at our disposal were limited to the choice and use of only one drug, I am sure that a great many, if not the majority, of us would choose opium; and I am convinced that if we were to select, say half a dozen of the most important drugs in the Pharmacopeia, we should all place opium in the first rank.”1 Although many useful drugs have been discovered since then, opium is still the basis for many standard medications. Because opium is a natural product, its morphine content can vary greatly from batch to batch. Opium commercially processed for medical use is adjusted so that 10% of any given amount of medical opium is composed of morphine.

Although medical opinion about opium has changed little, public opinion has changed a lot. Reasons for that shift go beyond the scope of this book, but in the nineteenth century, use of opium and its derivatives had wide social approval in America. Alcohol was considered more hazardous to health and home. One of the most telling measures of approval came from the life insurance industry in India, which freely granted policies to known opium users, as mortality statistics showed opium having no effect on life span. A life insurance official reported similar experience in China, although older users in China had higher mortality than older nonusers (probably many users took the drug for diseases that nonusers did not have, with the death rate related more to those diseases than to opium). Some of those statistics would change as the twentieth century progressed because drug laws would change the kinds of people who used opium, thereby associating opium with populations having higher mortality for reasons unrelated to opium’s drug properties.

Although identified with China, opium has been grown in the United States. In the late eighteenth century Benjamin Franklin used laudanum (typically wine laced with opium) to treat himself for kidney stones. During the nineteenth century Americans used opium mainly as an ingredient in laudanum and paregoric. Paregoric is a liquid including anise, camphor, and opium. Paregoric was first produced in the eighteenth century as an asthma medicine.

The compound is no longer used for that purpose but can reduce lung congestion by helping people to cough up mucus. Paregoric is a standard diarrhea remedy and is used to help infants suffering from drug withdrawal syndromes. In the 1960s the compound had a flurry of popularity among opiate addicts who would process the product in hopes of isolating the opium, then inject the substance they produced. The outcomes were typical of what happens when oral medications are injected, resulting in lung damage and disfiguring injuries to injection sites.

Less familiar modern opium preparations include home remedy mixtures of the substance with caffeine, aspirin, and acetaminophen (Tylenol or other brands). In America opium preparations were once a standard method of quieting noisy infants and children, and that practice is still followed in some parts of the world. One hazard in that custom is the possibility of fatal overdose, as people administering such concoctions do not always understand pediatric dosage.

Drawbacks.
Although some opium users have generally unhealthy lifestyles, few ailments have been attributed solely to the drug. Those ailments tend to be in the gastrointestinal tract, such as problems with the small intestine’s bile duct. “Cauliflower ear,” in which an ear thickens and becomes misshapen, was once associated with opium smoking. The affliction, however,
apparently came not from the drug but rather from the habit of lying down for hours in a comatose condition with an ear pressing against a hard surface.

Abuse factors.

Recreational use of opium is harder to define than we might think, because even if persons take the drug in a social setting, they can be seeking to reduce mental anxiety or physical pain, which is not the same as using a drug for fun. Some people swallow dry opium or drink tea made with seed or with dried heads of poppy flowers. In the nineteenth century poppy tea was a common medicinal drink, but in the early twenty-first century the habit tends to be limited to opiate addicts. The traditional recreational way to use opium is to inhale its smoke. Heating opium enough to make it smoke can reduce the drug content, and opium is already far weaker than substances refined from it (such as morphine and heroin). One authority estimates that
the amount of active drug inhaled by someone who smokes a given weight of opium will typically be 300 to 400 times less than the drug content in the same weight of injected heroin. Moreover, while an entire dose of heroin might be ingested in a few seconds, a pipeful of opium is smoked over a much longer period to slowly savor its effects, further reducing the opium’s impact. The English poet Samuel Taylor Coleridge started out using opium for medical purposes, as did Thomas De Quincey, and both men produced classic accounts of hallucinations and creative inspiration occurring under opium’s influence. Those accounts and later ones may well be true, but for such results people need to be particularly sensitive to the drug and also be prone to such experiences regardless of pharmaceutical encouragement. Arsenic is sometimes added to opium to increase smokers’ interest in sexual activity, a practice generating reports of arsenic poisoning among users. Drug interactions. Not enough scientific information to report about the natural product, although many studies have examined drug interactions with opiates and opioids.

Cancer.
Laboratory tests find that opium smoke may cause cancer, as may opium dross (waste products, such as scrapings from the inside of an opium pipe, which some persons chew or suck). Opium is suspected of causing esophageal and bladder cancer.

Pregnancy.

A pregnant woman using paregoric can give birth to an infant having dependence with opium.

Additional information.
Seed from opium poppies is a food product commonly used in breads, cakes, and candies. Consumption of amounts found in a normal meal can cause a false opiate positive in drug screens; controversy exists about whether further analysis of results from such testing can show
that poppy seed was the cause. Poppy seed oil is a comparatively unfamiliar product, but animal tests indicate it has good potential for human nutrition. In some parts of the world iodized poppy seed oil has been used instead of iodized salt to treat goiter and has been suggested as a means of preventing nervous endemic cretinism caused by iodine deficiency in the diet of pregnant women. Iodized poppy seed oil is taken up by cancerous portions of a liver, giving the substance clinical usefulness if anticancer drugs are blended into it, as the drugs then concentrate exactly where they are needed in the liver. Results from animal research have led investigators to speculate that consuming normal poppy seed oil may help prevent cancer.

Opium lettuce is not related to opium but can produce mild sensations similar to opium. Sedative and pain relief qualities of opium lettuce have been used for centuries. Lung and urinary tract afflictions have been treated with it. Opium lettuce is smoked for recreational purposes, but results have not caused the practice to gain popularity. A case report tells of individuals who received medical care after injecting a preparation made from the plant. It has other names including Acrid Lettuce, Bitter Lettuce, Compass Plant, Great Lettuce, Green Endive, Lactucarium, Lactuca virosa, Poison Lettuce, Prickly Lettuce, Strong-Scented Lettuce, and Wild Lettuce.

Additional scientific information may be found in:
Aurin, M. “Chasing the Dragon: The Cultural Metamorphosis of Opium in the United

States, 1825–1935.” Medical Anthropology Quarterly 14 (2000): 414–41.

Gharagozlou, H., and M.T. Behin. “Frequency of Psychiatric Symptoms among 150
Opium Addicts in Shiraz, Iran.” International Journal of the Addictions 14 (1979):
1145–49.

Goodhand, J. “From Holy War to Opium War? A Case Study of the Opium Economy
in North-Eastern Afghanistan.” Disasters 24 (2000): 87–102.

Haller, J.S. “Opium Usage in Nineteenth Century Therapeutics.” Bulletin of the New
York Academy of Medicine 65 (1989): 591–607.

Kalant, H. “Opium Revisited: A Brief Review of Its Nature, Composition, Non-Medical
Use and Relative Risks.” Addiction 92 (1997): 267–77.

Lerner, A.M., and F.J. Oerther. “Characteristics and Sequelae of Paregoric Abuse.” Annals
of Internal Medicine 65 (1966): 1019–30.

Quinones, M.A. “Drug Abuse during the Civil War (1861–1865).” International Journal
of the Addictions 10 (1975): 1007–20.

Strang, J. “Lessons from an English Opium Eater: Thomas De Quincey Reconsidered.”
International Journal of the Addictions 25 (1990): 1455–65.
Note
1. 64 (February 6, 1915): 477.

Oxazepam (Anxiolit, Serax, Serenid D)

Pronunciation: ox-A-zeh-pam (also pronounced ox-AZ-eh-pam)
Chemical Abstracts Service Registry Number: 604-75-1
Formal Names: Anxiolit, Serax, Serenid D
Type: Depressant (benzodiazepine class).
Federal Schedule Listing: Schedule IV (DEA no. 2835)
USA Availability: Prescription
Pregnancy Category: C

Uses.
This substance is a metabolite of diazepam, temazepam, chlordiazepoxide, and clorazepate dipotassium. Oxazepam’s primary medical usage is to fight insomnia, hostility, and anxiety. Some researchers have found the drug also works against depression, and the drug is used often for patients in mental health treatment centers. Studies show oxazepam, diazepam, and flunitrazepam to have about the same therapeutic effects, though not the same strengths (oxazepam being the weakest). In the 1990s a survey of pharmacies in Cracow, Poland, illustrated oxazepam’s worldwide popularity; around 14% of benzodiazepine prescriptions were for oxazepam, predominantly to women. One advantage of the drug is its safe “therapeutic ratio,” meaning that the amount needed to produce a desired medical effect is far below the amount needed to produce a poisonous effect. Thus medical practitioners have considerable flexibility in adjusting dosage to an exact amount needed by a patient.

Experimental use against tinnitus (ringing in the ears) has been promising. Sometimes oxazepam is the preferred antianxiety medicine for alcoholics suffering from cirrhosis, because a fully functioning liver is unnecessary to flush the substance from the body. Oxazepam is used to alleviate alcohol withdrawal syndrome and has been used to treat neuroses and schizophrenia.

Oxazepam is considered appropriate for short-term treatment of agitation in elderly persons suffering from dementia. Tests indicate the drug can reduce hostility as well as anxiety, an ability that would set oxazepam apart from other benzodiazepines. In a cat experiment, however, the drug increased predator behavior. The drug makes mice more combative. Rats kill more mice when dosed with oxazepam, but researchers interpret that result as illustrating potency of the drug rather than indicating it would promote aggression in humans. Human oxazepam reactions that increase hostility and combativeness are unusual and unexplained, although factors may include size and frequency of dose along with inherent personalities of users. Hostile human reactions are “paradoxical” effects, meaning they are the opposite of what normally happens after taking an oxazepam dose.

Drawbacks.
While under the drug’s influence people exhibit memory trouble. Oxazepam lowers body temperature in mice and rats. Case reports tell of oxazepam causing blisters or other skin eruptions on people. In mice the substance boosts the poisonous action of the cancer medicine ifosfamide. Some experiments using oxazepam to induce sleep find no hangover effect on persons’ performance the next day, but that result is not invariable; size of dose appears relevant. An experiment testing the drug’s effect on vigilance (an important ability when driving a car) found normal ability while persons were under the influence of a low dose. Another experiment using a dose four times greater did find vigilance impairment. Still another experiment showed slower movements.

Abuse factors.
One reviewer of the drug’s characteristics reported that it may have less addictiveness than diazepam. In one study opiate addicts found oxazepam no more attractive than a placebo. In another study sedative abusers judged the drug less attractive than diazepam and indeed mistakenly identified oxazepam as a placebo one third of the time (a mistake they almost
never made with diazepam) and even considered a placebo more appealing than oxazepam about one fifth of the time (a preference never occurring with diazepam). A similar experiment in which drug abusers compared oxazepam, diazepam, and placebo produced comparable results.

An animal research study found no tolerance produced by the drug. Monkeys, however, exhibit signs of tolerance, dependence, and withdrawal after taking the drug for a week or two. One human study found tolerance but no withdrawal symptoms. Nonetheless, melancholy, mood swings, confusion, anxiousness, panic, and seizures have been observed when doses of the drug stopped abruptly. Some of those “withdrawal symptoms,” however, are also conditions for which the drug is prescribed; so emergence of those conditions upon stopping the drug may simply mean the underlying conditions were not cured. A case report recounts a rare instance of someone having visual hallucinations while undergoing oxazepam withdrawal. Tapering oxazepam does not necessarily prevent abstinence symptoms, but symptoms have been controlled by substituting another drug. One authority warns that stopping oxazepam can be as touchy as stopping barbiturates. In the 1980s a health official in Australia portrayed oxazepam dependence as a growing problem. In contrast, another authority reviewing oxazepam’s history for a medical journal found only four accounts of human dependence on the drug and declared withdrawal symptoms to be unusual upon sudden stoppage. This reviewer speculated that oxazepam’s slow delivery of drug effects and its tendency to make people dizzy if a lot is consumed help discourage abuse.

Drug interactions.
A driving skills test showed that oxazepam worsens impairment induced by alcohol. Cigarette smoking shortens the time span that an oxazepam dose stays in the body. A mouse study found that animals could withstand higher doses of morphine and methadone if oxazepam was also
used.

Cancer.
Findings about oxazepam’s potential for causing human cancer have been inconclusive. Gene mutations would be a possible sign that cancer might eventually emerge; some laboratory tests show that the drug does not cause gene mutations, but genetic mutations were apparent after a six-month administration of the drug to mice. Oxazepam is described as causing liver cancer in mice. Researchers testing the drug on rats concluded that an unclear potential for causing cancer exists, but their uncertain conclusion was partly based on some dosages so high that apparently they were fatal to various individual animals.

Pregnancy.
Experiments have exposed mice to oxazepam during fetal development, and assorted differences in their behavior (compared to mice with no exposure) have been documented, including decreased sociability and decreased interaction with surroundings. What those differences might mean in a human context is unclear. Experimental evidence indicates that prenatal exposure to oxazepam may harm a mouse’s learning ability and temporarily slow growth. In humans the drug passes from a pregnant woman into the fetus. A survey of 4,014 instances of birth defects in the Netherlands from 1981 to 1994 found an association between oxazepam and cleft lip. The same association was found in Finland a few years earlier. Mice experiments have also produced head and mouth malformations, but the doses involved were
far higher than humans would be expected to take.

Oxazepam is considered to have less impact than other benzodiazepines on a nursing mother’s milk supply. Two nursing mothers who had measurable levels of oxazepam in their blood had no evidence of the substance in their milk. A case report tells of a nursing mother whose milk contained about 4.7% of her oxazepam dosage, with no apparent effect on the infant. In other cases, not even 0.001% of the oxazepam dose taken by a mother passed into her milk.

Additional scientific information may be found in:
Ayd, F.J., Jr. “Oxazepam: Update 1989.” International Clinical Psychopharmacology 5
(1990): 1–15.

Bliding, A. “The Abuse Potential of Benzodiazepines with Special Reference to Oxazepam.”
Acta Psychiatrica Scandinavica. Supplementum, no. 274 (1978): 111–16.

Bucher, J.R., et al. “Toxicity and Carcinogenicity Studies of Oxazepam in the Fischer
344 Rat.” Toxicological Sciences 42 (1998): 1–12.

Fouks, L., et al. “The Clinical Activity of Oxazepam.” Acta Psychiatrica Scandinavica.
Supplementum, no. 274 (1978): 99–103.

Griffiths, R.R., et al. “Comparison of Diazepam and Oxazepam: Preference, Liking and
Extent of Abuse.” Journal of Pharmacology and Experimental Therapeutics 229
(1984): 501–8.

Mewaldt, S.P., M.M. Ghoneim, and J.V. Hinrichs. “The Behavioral Actions of Diazepam
and Oxazepam Are Similar.” Psychopharmacology 88 (1986): 165–71.

Vaisanen, E., and E. Jalkanen. “A Double-Blind Study of Alprazolam and Oxazepam
in the Treatment of Anxiety.” Acta Psychiatrica Scandinavica 75 (1987): 536–41.

09 March 2009

Pentobarbital (Cafergot, Nembutal, Pentobarbitone, Phenobarbitone )

Pronunciation: pen-toh-BAR-bi-tal
Chemical Abstracts Service Registry Number: 76-74-4
Formal Names: Cafergot, Nembutal, Pentobarbitone, Phenobarbitone
Informal Names: Nebbies, Nembies, Nemmies, Nimbies, Yellow Bullets, Yellow Dolls, Yellow Jackets, Yellows
Type: Depressant (barbiturate class).
Federal Schedule Listing: Schedule II (oral and parentral, DEA no. 2270), Schedule
III for suppositories (DEA no. 2271)
USA Availability: Prescription
Pregnancy Category: D

Uses.
This short-acting substance has sedative qualities but is considered ineffective in treating nervous apprehension. Because of the drug’s sleepinducing characteristics, it is used as a preliminary to administering anesthesia and as a short-term treatment for insomnia. Pentobarbital has been observed to lower blood pressure, body temperature, and muscle tone. The compound can be used as an emergency anticonvulsant when a person has seizures, and
has been used to treat alcohol addicts undergoing withdrawal. Pentobarbital has been found effective in reducing pressure that fluid creates in the brain after severe head injury. Pentobarbital reduces a type of nerve cell death called neuronal apoptosis, and this reduction may help prevent stroke. Animal studies indicate that pentobarbital can help protect brain tissue against radiation, which might have practical application during treatment of brain tumors. Veterinarians use the substance for euthanasia: An unusual demonstration of the drug’s strength occurred when a lion was poisoned by eating meat from a horse that had been killed with pentobarbital.

Drawbacks.
Although the drug is a sedative, it can cause hyperactivity in children. Sudden stoppage of combined pentobarbital and benzodiazepine therapy in an infant caused temporary chorea (involuntary jerking). A feline experiment showed that tremors reminiscent of Parkinson’s disease can occur when pentobarbital is administered with chlorpromazine (also called Thorazine, often used to treat psychotic behavior). Persons with porphyria, a body chemistry affliction that can provoke violence, are supposed to avoid pentobarbital. Examination of epileptic children receiving pentobarbital shows elevated readings for total cholesterol, though levels of high-density lipoprotein (so-called good cholesterol) and triglycerides (associated with heart attack and stroke) seem unaffected.

In a monkey experiment pentobarbital interfered with time perception, ability to learn, short-term memory, attention span, and interest in tasks. The substance impeded task performances in a human experiment, with performance getting worse as the amount of thinking necessary for a chore increased.

Such a drug is unlikely to be welcome in the workplace. Although children using the substance apparently have trouble with language skills, a study found language development to be normal two years after the medication ceased.

Abuse factors.
In a test, alcohol drinkers who were not alcoholics found pentobarbital less appealing than a placebo and experienced no euphoria from pentobarbital, a finding consistent with other studies of persons who do not abuse drugs. When given choices of assorted substances, monkeys chose pentobarbital less often than water, which indicates the compound has low addictive potential. In contrast, drug abusers participating in an experiment found effects of pentobarbital and diazepam to be similar. Those two drugs thus had comparable appeal even though scientists running the experiment found pentobarbital possessing only 10% of diazepam’s strength. A study testing various effects on former drug addicts found pentobarbital to be 15 times
stronger than meprobamate, but morphine acted 6 times stronger than pentobarbital.

Cross-tolerance among chlordiazepoxide, pentobarbital, and alcohol has been observed in rats. A study of sedative drug abusers found alcohol and pentobarbital to deliver similar effects, with pentobarbital possibly having more appeal. A monkey experiment indicates that alcohol increases the attractiveness of pentobarbital. Dependence can develop, and in humans the
pentobarbital withdrawal syndrome can duplicate the delirium tremens of alcohol withdrawal. A mice study found that tolerance to pentobarbital developed more rapidly if assorted drugs of abuse were also being administered (morphine, amphetamine, alcohol, or cocaine).

Drug interactions.
A case report notes that pentobarbital can almost double the speed with which theophylline (commonly used to treat asthma and other breathing difficulties) disappears from the bloodstream, requiring changes in normal theophylline dosage. In a mice experiment alcohol boosted pentobarbital’s potency. A human study found that chronic alcohol ingestion reduces
the effective length of a pentobarbital dose. Grapefruit juice extends the amount of sleep produced by pentobarbital in rats, and in mice the drug inhibits caffeine effects. At one time researchers suspected that taking pentobarbital along with MDMA would reduce organic brain damage caused by MDMA, but rat experiments indicate that any apparent benefit comes simply
from the lower body temperature produced by pentobarbital. Although cocaine is a stimulant, in a rat experiment it increased the sleep-inducing quality of pentobarbital.

Cancer.
In animal experimentation pentobarbital has caused cancer. In humans long-term usage is associated with cancer of the ovaries and bronchi, but that finding is weakened by the patients also smoking cigarettes. Pregnancy. A large survey of pregnancy outcomes found that pentobarbital does not appear to cause birth defects. Nonetheless pregnant women are supposed
to avoid the drug.

Additional information.
Some capsule formats of Nembutal (pentobarbital sodium CAS RN 57-33-0) contain FD&C Yellow No. 5 (tartrazine), which can cause asthma attacks or other allergic responses in sensitive persons, particularly if someone has adverse reactions to aspirin. Cafergot PB is a combination
of bellafoline, caffeine, and ergotamine tartrate. The combination was tested with and without pentobarbital sodium to determine effect on migraine headache. Presence of pentobarbital not only enhanced reduction of pain but also helped treat anxiety, nausea, vomiting, poor appetite, and low tolerance of light.

Additional scientific information may be found in:
Cole-Harding, S., and H. de Wit. “Self-Administration of Pentobarbital in Light and
Moderate Alcohol Drinkers.” Pharmacology, Biochemistry, and Behavior 43 (1992):
563–69.

Hambly, G., C. Frewin, and B. Dodd. “Effect of Anticonvulsant Medication in the Preschool
Years on Later Language Development.” Medical Journal of Australia 148
(1988): 658, 661–62.

Mintzer, M.Z., et al. “Ethanol and Pentobarbital: Comparison of Behavioral and Subjective
Effects in Sedative Drug Abusers.” Experimental and Clinical Psychopharmacology
5 (1997): 203–15.

Pickworth, W.B., M.S. Rohrer, and R.V. Fant. “Effects of Abused Drugs on Psychomotor
Performance.” Experimental and Clinical Psychopharmacology 5 (1997): 235–41.
Pierce, James I. “Drug-Withdrawal Psychoses.” American Journal of Psychiatry 119
(1963): 880–81.

Pentazocine (Fortral, Fortralgesic, Fortralin, Fortwin, Liticon,Pentgin, Sosegon, Sosenyl, Talacen, Talwin, Talwin Nx)

Pronunciation: pen-TAZ-oh-seen
Chemical Abstracts Service Registry Number: 359-83-1. (Hydrochloride form 64024-15-3)
Formal Names: Fortral, Fortralgesic, Fortralin, Fortwin, Liticon, Pentgin, Sosegon, Sosenyl, Talacen, Talwin, Talwin Nx
Informal Names: 4 4s, Teacher, Ts, Yellow Footballs. Combination with methylphenidate:
Crackers, 1s & 1s, Poor Man’s Heroin, Ritz & Ts, Ts & Rits, Ts & Rs, Sets. Combination with tripelennamine: Ts & Blues, Ts & Bs
Type: Depressant.
Federal Schedule Listing: Schedule IV (DEA no. 9709)
USA Availability: Prescription
Pregnancy Category: C

Uses.
Pentazocine became available in the 1960s. Some authorities classify the drug as an opioid; some do not. Rather than having cross-tolerance with opiates and opioids, pentazocine can provoke a withdrawal syndrome from them. Volunteers who receive pentazocine have been uncertain about what sort of drug it is; some say it is a hallucinogen; some think they are receiving
alcohol.

Pentazocine has about the same pain relief strength as codeine. An experiment using oral surgery patients found pentazocine’s pain relief to be the same as aspirin’s. After drug abusers began grinding down Talwin tablets and injecting the powder to get morphine and heroin sensations, the manufacturer introduced Talwin Nx tablets, which include a chemical designed to block those sensations if the substance is injected. Dispute exists about whether the Nx version of Talwin actually prevents effects sought by illicit users.

Research indicates that women surgical patients tend to get better pain relief from pentazocine than male patients. Research also indicates that the drug’s surgical pain control is more effective for older patients and less effective for neurotics and for individuals with outgoing personalities.

The drug has been routinely used to ease cancer pain and has had success in reducing joint pain
caused by various afflictions, including arthritis. After noting that pentazocine does not prolong bleeding times, researchers called it suitable to fight pain from hemophilia, a blood disease that promotes bleeding. The substance has also been given as a treatment for stubborn cases of hiccups.

Investigators have documented that people can briefly experience euphoria after taking the drug. Some users feel more amiable and serene after a dose. Drawbacks. Unwanted pentazocine actions include rapid heartbeat, blood pressure changes (up or down), fainting, sweating, confusion, sleepiness, blurred vision, nausea, vomiting, and constipation. Studies have found that
1% to 10% of persons receiving the drug (especially an injectable pharmaceutical version) have odd psychological reactions such as hallucinations, delusions, or a sense of unreality about the world. The substance can interfere with decision making and physical movement. Research has shown that driving skills decline when a person uses the drug, and users should avoid operating
motor vehicles or other dangerous machinery. Because pentazocine has occasionally been associated with seizures, it should be used cautiously by persons prone to that affliction. The substance should also be used cautiously by people suffering from pancreas malfunction or breathing difficulty. The drug may be particularly hazardous for asthma sufferers who are overly sensitive to aspirin. Pentazocine is associated with skin hardening, which can result in
extensive surgical removal of affected areas, to be replaced with skin grafts.

Case reports tell of the drug provoking not only skin lesions but internal lesions in the digestive tract. Prolonged use of the substance can also cause muscle destruction that cripples a person’s ability to move arms and legs. The compound can dangerously reduce white blood cell levels. Rat experiments indicate the drug may provoke attacks of porphyria, a body chemistry disease
that can make people violent and sensitive to light.

One group of researchers documented that pentazocine increased the heart’s workload by 22% in cardiac disease patients. Another group found that after a heart attack the drug increases blood pressure and the heart’s need for oxygen and concluded that pentazocine is dangerous for heart attack patients.

Not all authorities agree with that conclusion, however; some say that such adverse cardiac effects can be avoided through careful dosage, and other opinion says the drug is preferable to morphine for heart attack patients.

Abuse factors.
Some abusers inject powder from oral pentazocine tablets.
Oral pentazocine tablets contain ingredients not intended for introduction into the bloodstream, and injection can be fatal even though the digestive system can handle the same ingredients without difficulty.

Pentazocine and the antihistamine-anesthetic tripelennamine are a common illicit drug combination called Ts & Blues, sometimes used as a substitute for heroin (“T” standing for Talwin and “Blues” for the antihistamine tablets’ color). The combination can create more euphoria than pentazocine alone produces and reduce the discontent caused by some doses of pentazocine. Users report development of memory trouble. Lung damage is a classic consequence of the combination, promoted by injecting oral formats of the drugs. Users
have been hospitalized with chest pain, anxiety, spasms, sweating, nausea, and lightheadedness. Fainting and seizures are less common problems. Kidney damage has been noted. Other antihistamines can also be dangerous to use with pentazocine.

Pentazocine tolerance and dependence can occur. After daily doses were given to monkeys for six weeks, mild withdrawal symptoms appeared when the animals received nalorphine, a substance that provokes withdrawal signs if someone has been using opioids. That result supports classifying pentazocine as an opioid, but in humans nalorphine does not cause pentazocine withdrawal— a result consistent with pentazocine not being an opioid. Pentazocine
withdrawal is normally likened to a light version of the opiate withdrawal syndrome, although case reports tell of some persons suffering intense physical discomfort for up to two weeks (cramping muscles, painful abdomen and back, nausea, itching, sweating, and general discomposure). Debate exists about whether pentazocine addiction should be treated by substituting other drugs such as methadone or whether treatment should avoid substitution
altogether. Some authorities have wondered if pentazocine addiction occurs in persons who are not polydrug abusers. Some authorities even question whether pentazocine addiction exists, noting cases in which body fluid testing contradicted drug users’ claims to be using the drug (while indicating they were using other substances). German researchers found that addiction reports are at least exaggerated; upon investigation, only 8 of 60 reports turned out to be authentic.

Drug interactions.
Persons who smoke or who live in a polluted air environment may need higher doses of pentazocine than persons who breathe clean air. Morphine and pentazocine boost each other’s pain-relieving action. Alcohol and possibly monoamine oxidase inhibitors (found in some antidepressants) may react badly with pentazocine.

Cancer.
Animal research has not shown pentazocine to cause cancer.

Pregnancy.
Normal production of litters has occurred when pentazocine was given to pregnant rats and rabbits, and no birth defects were apparent.

The drug is absorbed by the fetus if a pregnant woman takes a dose. Examination of one hospital’s records of all pregnant patients who used pentazocine illicitly in a two-year period showed that their infants tended to be premature and undersized, but no malformation was attributed to the drug. Newborns were occasionally dependent. Despite those disadvantages the children seemed to develop normally in their first year of life. When pentazocine was given simply as a pain reliever in childbirth, examination of the infants revealed no difference from children born to women who did not receive a medical dose of the drug during childbirth.
A study found Ts & Blues mothers to have an increased rate of assorted diseases that would not promote healthy fetal development: hepatitis, anemia, gonorrhea, syphilis. Such afflictions indicate a risk-taking lifestyle in which prenatal care is a small concern. A survey of maternity records at one hospital showed that pregnant women who used Ts & Blues tended to produce smaller infants, but no major birth defects were associated with the drug combination.

Another study found behavioral abnormalities in newborns that had fetal exposure to Ts & Blues, although the conduct may simply have been a temporary sign of drug withdrawal. Investigators running a rat experiment, however, noted long-term behavioral differences between a group of rats having fetal exposure to the drug combination and another group that was unexposed.

Additional scientific information may be found in:

Brogden, R.N., T.M. Speight, and G.S. Avery. “Pentazocine: A Review of Its Pharmacological
Properties, Therapeutic Efficacy and Dependence Liability.” Drugs 5
(1973): 6–91.

Debooy, V.D., et al. “Intravenous Pentazocine and Methylphenidate Abuse during
Pregnancy. Maternal Lifestyle and Infant Outcome.” American Journal of Diseases
of Children 147 (1993): 1062–65.

“Pentazocine.” British Medical Journal 2 (1970):409–10.

Saarialho-Kere, U., M.J. Mattila, and T. Seppala. “Parenteral Pentazocine: Effects on
Psychomotor Skills and Respiration, and Interactions with Amitriptyline.” European
Journal of Clinical Pharmacology 35 (1988): 483–89.

Showalter, C.V. “T’s and Blues: Abuse of Pentazocine and Tripelennamine.” Journal of
the American Medical Association 244 (1980): 1224–25.

Zacny, J.P., et al. “Comparing the Subjective, Psychomotor and Physiological Effects of
Intravenous Pentazocine and Morphine in Normal Volunteers.” Journal of Pharmacology
and Experimental Therapeutics 286 (1998): 1197–207.

Oxycodone (Endocet, Endocodone, Endodan, M-Oxy, Oxycet, Oxycocet,OxyContin, OxyFast, OxyIR, Percocet, Percodan, Percodan-Demi,Percolone, Roxicet, )

Pronunciation: ox-i-KOH-dun
Chemical Abstracts Service Registry Number: 76-42-6 (Hydrochloride form 124-
90-3)
Formal Names: Endocet, Endocodone, Endodan, M-Oxy, Oxycet, Oxycocet, OxyContin, OxyFast, OxyIR, Percocet, Percodan, Percodan-Demi, Percolone, Roxicet, Roxicodone, Roxilox, Roxiprin, Supeudol, Tylox
Informal Names: Oxicotten, Oxy, Oxycotton, Oxy 80s, Percs
Type: Depressant (opiate class).
Federal Schedule Listing: Schedule II (DEA no. 9143)
USA Availability: Prescription
Pregnancy Category: B

Uses.
This drug is considered more addictive than codeine, from which oxycodone is derived. Some authorities say oxycodone comes from thebaine, which is correct also, because thebaine is the parent chemical that yields codeine.

Oxycodone is anywhere from 7 to 12 times stronger than codeine and about 0.3 to 2.2 times the strength of morphine, depending on the way the drugs are used. Body chemistry transforms part of an oxycodone dose into oxymorphone. Patients have found pain relief from oxycodone to be as satisfactory as relief from ketamine and morphine. Oxycodone has been used successfully to reduce pain from dentistry, surgery, cancer, and osteoarthritis (a painful disease of a person’s joints). The drug is also used as a sedative and as a cough suppressant. It is sometimes prescribed for “restless leg syndrome,” an affliction in which persons keep moving their arms and legs around. The drug has also reduced tics associated with Tourette’s syndrome.

Oxycodone can relax people and at times even create euphoria. Some researchers speculate that oxycodone’s euphoric effects may improve patients’ sensation of pain relief, making the substance more effective for that purpose than a drug that lacks euphoric effects. The drug works an antidepressant for some persons.

Blood levels from a given dose of oxycodone tend to be about 25% higher in females than in males. The cause is unknown, but the difference apparently has no impact on medical usage.

Drawbacks.
Unwanted effects include nausea, vomiting, constipation, itching, sweating, sleepiness, reduced sex drive, general weakness, impairment of breathing, and momentary low blood pressure when a person stands up. One study found the drug to impair breathing more than various other opiates do, and in another study, doses of oxycodone had to be stopped lest the volunteers
be harmed by further breathing difficulty. Normally the drug should be avoided if a person suffers from pancreatitis, enlarged prostate, difficulty with urination, or poorly functioning thyroid or adrenal glands. Experimenters have demonstrated that the drug reduces physical and mental abilities needed for driving automobiles.

Abuse factors.
The drug’s potential for abuse is considered the same as morphine’s, and oxycodone is a sought-after product among opiate abusers. A study that reviewed medical records found no evidence of tolerance developing in a medical context. Regardless of whether people use the drug
medically or recreationally, dependence can develop, followed by withdrawal symptoms if dosage stops suddenly. Withdrawal symptoms are described as minor and can be avoided by gradually discontinuing the drug instead of suddenly stopping it or by administering clonidine, a substance normally used to control high blood pressure.

Drug interactions.
People should use oxycodone cautiously if they are also taking antihistamines, various antidepressants, or a monoamine oxidase inhibitor (MAOI, found in some antidepressants and other medicine). Combining those sorts of drugs with oxycodone can produce excessive effects. The same is true of alcohol. Oxycodone also seems to interact with cyclosporine, a substance used to suppress an individual’s immune system (an effect useful in preventing rejection of organs in transplant patients).

Cancer.
Oxycodone’s potential for causing cancer is unknown.

Pregnancy.
Oxycodone is believed to pose a small risk of causing birth defects, but safety for administration during pregnancy has not been determined. An examination of medical records found a slightly higher likelihood of birth defects if pregnant women use oxycodone, but, unlike most drugs associated with malformations, no particular type of birth defect appeared after using oxycodone. That suggests the drug might not be responsible for the observed abnormalities.

Newborns may have dependence on the drug if their mothers have been taking it during pregnancy. Enough of the drug can pass into a woman’s milk to cause dependence in a breast-feeding infant.

Combination products.
Tylox contains sodium metabisulfite, to which asthmatics and other persons may have a serious allergic reaction, and should be used cautiously if the user is sensitive to sulfites.

Additional scientific information may be found in:
Kalso, E., and A. Vainio. “Morphine and Oxycodone Hydrochloride in the Management
of Cancer Pain.” Clinical Pharmacology and Therapeutics 47 (1990): 639–46.

Saarialho-Kere, U., M.J. Mattila, and T. Seppala. “Psychomotor, Respiratory and Neuroendocrinological Effects of a Mu-Opioid Receptor Agonist (Oxycodone) in Healthy Volunteers.” Pharmacology and Toxicology 65 (1989): 252–57.

Schick, B., et al. “Preliminary Analysis of First Trimester Exposure to Oxycodone and
Hydrocodone.” Reproductive Toxicology 10 (1996): 162.Stoll, A.L., and S. Rueter. “Treatment Augmentation with Opiates in Severe and Refractory Major Depression.” American Journal of Psychiatry 156 (1999): 2017.

Walters, A.S., et al. “Successful Treatment of the Idiopathic Restless Legs Syndrome in
a Randomized Double-Blind Trial of Oxycodone versus Placebo.” Sleep 16 (1993): 327–32.

Ytterberg, S.R., M.L. Mahowald, and S.R. Woods. “Codeine and Oxycodone Use in patients with Chronic Rheumatic Disease Pain.” Arthritis and Rheumatism 41 (1998): 1603–12.

Opium (Papaver album, Papaver somniferum, Poppy)

Pronunciation: OH-pi-uhm
Chemical Abstracts Service Registry Number: 8008-60-4
Formal Names: Papaver album, Papaver somniferum, Poppy
Informal Names: Ah-pen-yen, Aunti, Aunti Emma, Big O, Black, Blackjack, Black Pill, Black Stuff, Chandoo, Chandu, Chinese, Chinese Molasses, Chinese Tobacco, Chocolate, Cruz, Dopium, Dover, Dover’s Deck, Dover’s Powder, Dreamer, Dream Gun, Dreams, Dream Stick, Easing Powder, Emma, Fi-Do-Nie, Garden-Poppy, Gee, God’s Medicine, Goma, Gondola, Gong, Goric, Great Tobacco, Gum, Guma, Hard Stuff, Hocus, Hop, Indonesian Bud, Joy, Joy Plant, Mawseed, Midnight Oil, Mira, Mud, O, Oil, OJ, OP, Ope, Pen Yan, Pen Yen, PG, Pin Gon, Pin Yen, Plant, PO, Pox, Skee, Tar, Tongs, Tox, Toxy, Toys, When- Shee, Winshee, Yen Shee Suey, Ze, Zero
Type: Depressant (opiate class).
Federal Schedule Listing: Schedule II (DEA no. 9600)
USA Availability: Prescription
Pregnancy Category: C

Uses.
Many opium products are discussed elsewhere in this book, but here we are dealing with the substance from which all those products originate. Opium has long been used to relieve pain, fight coughs, cure diarrhea, and control spasms. Traditionally, opium is dried sap harvested from the seedproducing portion of opium poppy plants. At harvest time fields of poppies can have a strong smell, and children in the fields can be overcome by those airborne chemicals. A modern opium variety is “poppy straw,” composed of dry or liquid extracts from the plant. The natural product can be used by itself or can be refined to produce various drugs known as “opiates,” valued for their medicinal effects.

Archaeologists have found evidence of opium poppy cultivation dating from 15,000 years ago, but examination of historical records has not proven that ancient peoples understood opium’s medicinal benefits; the product may have been used traditionally but without understanding how or even whether it worked. Opium may have been used in Roman Empire religious ceremonies, perhaps exploiting the drug’s effects to symbolize a process of death and reincarnation, and even older records imply that ancients may have believed that opium could produce happiness, although evidence of ancient recreational use is nonexistent.

The Opium War from 1840 to 1842 was the first drug war, followed by the second Opium War of 1856 to 1860. These military conflicts were fought against China by England and other European powers in order to force the Chinese government to legalize the opium trade (certainly a goal different from that of the “drug war” familiar to Americans as the twenty-first century
began).

Opium and its morphine component were widely used to treat wounded soldiers in the American Civil War, and later historians have routinely said that addiction became so common that it was called “the soldier’s disease.” Such illness may have existed, but an investigator who diligently examined medical writings from that time found none that attributed postwar addictions to war-related medical use. In that era the opium trade was legal, and someone who analyzed opium import statistics found no evidence that consumption rose due to Civil War addictions; a distinguished authority has noted that people of that era called dysentery “the soldier’s disease.”

Just before World War I an article in the Journal of the American Medical Association declared, “If the entire materia medica at our disposal were limited to the choice and use of only one drug, I am sure that a great many, if not the majority, of us would choose opium; and I am convinced that if we were to select, say half a dozen of the most important drugs in the Pharmacopeia,
we should all place opium in the first rank.”1 Although many useful drugs have been discovered since then, opium is still the basis for many standard medications. Because opium is a natural product, its morphine content can vary greatly from batch to batch. Opium commercially processed for medical use is adjusted so that 10% of any given amount of medical opium is composed of morphine.

Although medical opinion about opium has changed little, public opinion has changed a lot. Reasons for that shift go beyond the scope of this book, but in the nineteenth century, use of opium and its derivatives had wide social approval in America. Alcohol was considered more hazardous to health and home. One of the most telling measures of approval came from the life insurance industry in India, which freely granted policies to known opium users, as mortality statistics showed opium having no effect on life span. A life insurance official reported similar experience in China, although older users in China had higher mortality than older nonusers (probably many users took the drug for diseases that nonusers did not have, with the death rate
related more to those diseases than to opium). Some of those statistics would change as the twentieth century progressed because drug laws would change the kinds of people who used opium, thereby associating opium with populations having higher mortality for reasons unrelated to opium’s drug properties.

Although identified with China, opium has been grown in the United States. In the late eighteenth century Benjamin Franklin used laudanum (typically wine laced with opium) to treat himself for kidney stones. During the nineteenth century Americans used opium mainly as an ingredient in laudanum and paregoric. Paregoric is a liquid including anise, camphor, and opium. Paregoric was first produced in the eighteenth century as an asthma medicine.

The compound is no longer used for that purpose but can reduce lung congestion by helping people to cough up mucus. Paregoric is a standard diarrhea remedy and is used to help infants suffering from drug withdrawal syndromes. In the 1960s the compound had a flurry of popularity among opiate addicts who would process the product in hopes of isolating the opium, then inject the substance they produced. The outcomes were typical of what happens when oral medications are injected, resulting in lung damage and disfiguring injuries to injection sites.

Less familiar modern opium preparations include home remedy mixtures of the substance with caffeine, aspirin, and acetaminophen (Tylenol or other brands). In America opium preparations were once a standard method of quieting noisy infants and children, and that practice is still followed in some parts of the world. One hazard in that custom is the possibility of fatal overdose,
as people administering such concoctions do not always understand pediatric dosage.

Drawbacks.
Although some opium users have generally unhealthy lifestyles, few ailments have been attributed solely to the drug. Those ailments tend to be in the gastrointestinal tract, such as problems with the small intestine’s bile duct. “Cauliflower ear,” in which an ear thickens and becomes misshapen, was once associated with opium smoking. The affliction, however,
apparently came not from the drug but rather from the habit of lying down for hours in a comatose condition with an ear pressing against a hard surface.

Abuse factors.
Recreational use of opium is harder to define than we might think, because even if persons take the drug in a social setting, they can be seeking to reduce mental anxiety or physical pain, which is not the same as using a drug for fun. Some people swallow dry opium or drink tea made with
seed or with dried heads of poppy flowers. In the nineteenth century poppy tea was a common medicinal drink, but in the early twenty-first century the habit tends to be limited to opiate addicts. The traditional recreational way to use opium is to inhale its smoke. Heating opium enough to make it smoke can reduce the drug content, and opium is already far weaker than substances refined from it (such as morphine and heroin). One authority estimates that
the amount of active drug inhaled by someone who smokes a given weight of opium will typically be 300 to 400 times less than the drug content in the same weight of injected heroin. Moreover, while an entire dose of heroin might be ingested in a few seconds, a pipeful of opium is smoked over a much longer period to slowly savor its effects, further reducing the opium’s impact. The English poet Samuel Taylor Coleridge started out using opium for medical purposes, as did Thomas De Quincey, and both men produced classic accounts of hallucinations and creative inspiration occurring under opium’s influence. Those accounts and later ones may well be true, but for such results people need to be particularly sensitive to the drug and also be prone to such experiences regardless of pharmaceutical encouragement. Arsenic is sometimes added to opium to increase smokers’ interest in sexual activity, a practice generating reports of arsenic poisoning among users. Drug interactions. Not enough scientific information to report about the natural product, although many studies have examined drug interactions with opiates and opioids.

Cancer.
Laboratory tests find that opium smoke may cause cancer, as may opium dross (waste products, such as scrapings from the inside of an opium pipe, which some persons chew or suck). Opium is suspected of causing esophageal and bladder cancer.

Pregnancy.
A pregnant woman using paregoric can give birth to an infant having dependence with opium.

Additional information.
Seed from opium poppies is a food product commonly used in breads, cakes, and candies. Consumption of amounts found in a normal meal can cause a false opiate positive in drug screens; controversy exists about whether further analysis of results from such testing can show
that poppy seed was the cause. Poppy seed oil is a comparatively unfamiliar product, but animal tests indicate it has good potential for human nutrition. In some parts of the world iodized poppy seed oil has been used instead of iodized salt to treat goiter and has been suggested as a means of preventing nervous endemic cretinism caused by iodine deficiency in the diet of pregnant
women. Iodized poppy seed oil is taken up by cancerous portions of a liver, giving the substance clinical usefulness if anticancer drugs are blended into it, as the drugs then concentrate exactly where they are needed in the liver. Results from animal research have led investigators to speculate that consuming normal poppy seed oil may help prevent cancer.

Opium lettuce is not related to opium but can produce mild sensations similar to opium. Sedative and pain relief qualities of opium lettuce have been used for centuries. Lung and urinary tract afflictions have been treated with it. Opium lettuce is smoked for recreational purposes, but results have not caused the practice to gain popularity. A case report tells of individuals who
received medical care after injecting a preparation made from the plant. It has other names including Acrid Lettuce, Bitter Lettuce, Compass Plant, Great Lettuce, Green Endive, Lactucarium, Lactuca virosa, Poison Lettuce, Prickly Lettuce, Strong-Scented Lettuce, and Wild Lettuce.

Additional scientific information may be found in:
Aurin, M. “Chasing the Dragon: The Cultural Metamorphosis of Opium in the United
States, 1825–1935.” Medical Anthropology Quarterly 14 (2000): 414–41.

Gharagozlou, H., and M.T. Behin. “Frequency of Psychiatric Symptoms among 150
Opium Addicts in Shiraz, Iran.” International Journal of the Addictions 14 (1979):
1145–49.

Goodhand, J. “From Holy War to Opium War? A Case Study of the Opium Economy
in North-Eastern Afghanistan.” Disasters 24 (2000): 87–102.

Haller, J.S. “Opium Usage in Nineteenth Century Therapeutics.” Bulletin of the New
York Academy of Medicine 65 (1989): 591–607.

Kalant, H. “Opium Revisited: A Brief Review of Its Nature, Composition, Non-Medical
Use and Relative Risks.” Addiction 92 (1997): 267–77.

Lerner, A.M., and F.J. Oerther. “Characteristics and Sequelae of Paregoric Abuse.” Annals
of Internal Medicine 65 (1966): 1019–30.

Quinones, M.A. “Drug Abuse during the Civil War (1861–1865).” International Journal
of the Addictions 10 (1975): 1007–20.

Strang, J. “Lessons from an English Opium Eater: Thomas De Quincey Reconsidered.”
International Journal of the Addictions 25 (1990): 1455–65.
Note
1. 64 (February 6, 1915): 477.